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Reflection from Fractal Cantor Layers

in a Rectangular Waveguide
T. J. Cui and C. H. Liang, Senior Member, IEEE

Abstract-The multilayered medium modeled by a Cantor bar
is a type of fractal structure that has found wide applications

in some optical and quantum areas. The reflection properties of
wave in a rectangular waveguide filled with fractal Cantor bar
layers are investigated. By introducing a concept of self-similarity
of networks, a novel exact self-similar rdgorithm for reflection and

transmission coefficients is derived. Numerical examples show

that the reflection from the fractal layer in a waveguide has some

special properties.

I. INTRODUCTION

sINCE the fractal concept was first proposed by Mandelbrot

in 1970s [1], its wide applications have been found in

natures and social sciences. In the optical and electromagnetic

areas, a lot of researches have been made by Jakeman,

Bourrely, Jaggard and other scholars [3] w [8]. One of the

above applications is the problem of electromagnetic wave

interactions with finely divided layers characterized by a

specified fractal distribution, which finds applications in areas

as varied as multilayer synthesis and analysis, distributed-feed

back integrated-optical structures, and multiple-quantum-well

devices [7], [8]. In this letter, we will consider the problem

of guided wave interactions with fractal layers, in which the

reflection properties from the fractal Cantor bar layers in a

rectangular waveguide are investigated and a novel exact self-

similar algorithm for reflection and transmission coefficients

is derived by introducing the concept of self-similarity

networks.

II. RECTANGULAR WAVEGUIDE FILLED WITH FRACTAL

CANTOR BAR LAYERS AND SELF-SIMILAR NETWORKS

Fractals are characterized by their dilation symmetry

of

or

property of self-similarity in which the object is invariant

under a change of scale and displacement. Cantor set is a

typical example of the fractals. As demonstrated in Fig. 1,

a Cantor bar layers in a rectangular waveguide is generated

from a bar of unit length by repeatedly removing the middle

l/R(R > 1) of each existing bar. Each part of the bar layers

at a given stage of growth, when magnified, appears as the set

in a previous stage. Cantor dust is formed when the height of

the bars becomes vanishingly small.

If the height of the bar in growth stage O is A, the height

of each bar of the Cantor bars in growth stage m is easily
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Fig. 1. Generation of a fractat Cantor bar (R = 3) in a rectangular
waveguide and its stages of growth.

obtained from the generation of

()

~ = R–1 ‘A
m

2R ‘

the fractal Cantor layers:

rn=o, 1,2, . . . 7 (1)

and the relation between AO (the distance of the two bars in

growth stage 1, see Fig. 1) and d~ is further derived

Ao=~=
(2R)m

R R(R - l)mdm’
rn=l,2,3, ..,. (2)

Because the total number of the bars in growth stage m is

A4(m) = 2m, the fractal dimension D. of the Cantor dust is

achieved by using the usual definition of fractals [1]

D. = – lim
in Al(m) in 2

~-+m ln(dm) = ln(2R) - ln(R – 1)’
(3)

which is just the Hausdorff’s dimension [2].

As we can see from Fig, 1, this fractal dimension indicates

that the Cantor dust occupies more space than a point (D. -

O) but less than a line (Dc ~ 1), As the Cantor bar ideally

approaches higher stages of growth, its total length approaches

zero, and the number of bars becomes unbounded.
According to microwave network theory, the Cantor set in

Fig. 1 will be equivalent to multiple cascaded networks which

we call Cantor cascaded networks. These Cantor cascaded

networks are characterized by their dilation symmetry, thus

we define them as self-similar networks.
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Fig. 2. The equivalent microwave network of the fractat Cantor bar in growth
stage O.

III. REFLECTION AND TRANSMISSION COEFFICIENTS OF THE

FRACTAL CANTOR LAYERS IN A RECTANGULAR WAVEGUIDE

To obtain the self-similar networks of the fractal Cantor

layers in a rectangular waveguide, we first consider the mode

propagation constant ~ and characteristic wave impedance ZO

of the waveguide filled with even dielectrics. Suppose that

the size of the waveguide is a x b and the permittivity and

permeability relative to free space of the dielectrics are e, and

p. respectively, by the guided wave theory we have [9]

@(Kr> ET) = 2T’Yf -/c (4)

zFE(Prl ‘r)= vo/m/7>

Zp(pr, %) = qo7/m) (5)

where Z$E and Z$M represent the characteristic wave imp-

edances of TEP~ mode and TMP~ mode respectively, and

7 = v“~>

.fc = Ci(P/a)2 + (q/b) 2/(2=)>

p = 0,1,2, ...; q = 0,1,2, ...; p=q=O excepted,

in which ~ is the frequency; c = 3 x 108 m/s is the light speed

in free space.

For the fractal Cantor bar layers in the rectangular wave-

guide shown in Fig. 1, the white areas represent the back-

ground or host dielectric, whose permittivity and permeability

relative to free space are denoted se and ~.; while the shaded

areas represent the embedded-layer, denoted G. and UT. Thus

the equivalent microwave network of the Cantor bar in growth

stage O is obtained, as shown in Fig. 2, where T1l and Tlz

are the T parameters of the transmission line junction. By the

network theory, we have

TII = l/~~,
r “)

T12 = Rol/ 1 – R;l,

where

Rol = (.Z-01– .zoo)/(zol + zoo), (7)

in which ZO1 = Zo(p~,gT), -ZOO= zo(~e,ee), I% = p(LL~,%-),

as expressed in (4) and (5).

According to the properties of T parameters, the total T
parameters of the Cantor bar in growth stage O, [To] =

[1‘U(J2)()
will be achieved from Fig. 2,

—’UIJ W(j

Uo(do) = [exp(j~ldo) – R?jl exp(–j@ldo)]/(1 – R&) (8a)

vo(do) = –.j2R01 sin(@ldO)/(1 – R&) (8b)

Wo(do) = [exp(–j~ldo) – @l exp(~@ldo)]/(1 – R&) (8c)

and det[TO] = uowo + v; = 1 is satisfied.

#OAO(dm )
—
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—

Fig. 3. T’be equivalent microwave network of the fractal Cantor bars in
growth stage m.

For the fractal Cantor bars in growth stage 1 (see Fig. 1),

their equivalent microwave network should consist of two sub-

networks and a section of transmission line whose propagation

constant is ~0 = ,6(,u., se) and length is Ao, which we

cascaded. Each of the sub-networks is the same as the total

network of the Cantor bar in growth stage O, if do is replaced

by dl. This is just the self-similarity of networks. On the

analogy of above idea, the equivalent microwave network of

the Cantor bars in growth stage m also consists of two sub-

networks and a section of transmission line. Each sub-networks

is the same as the total network of the bars in growth stage

m – 1 if d~–. 1 is replaced by dn, as shown in Fig. 3.

By using the properties of T parameters, the total T pa-

rameters of the Cantor bars in growth stage m, [Tm] =

k ::1can be derived from Fig. 3

u~(d~) = u&_l(d~) exp[jOn(dn)]

- v&_l(dn) exp[-jO~(d~)] (9a)

v~(d~) = v~-l(d~){u~–l(d~) exp[~~m(dm)]

+wm-l(dm) exp[–~~m(d~)]} (9b)

wm(dm) = w~_l(d~) exp[–jO~(d~)]

- v&_l(dm) exp~~m(dm)] (9C)

and det [Tm] = det [Tin– 1] = 1 is satisfied, where

L9m(dm)= ,l?I.AJ= /30
(2R)m d

R(R – I)m ‘“
(lo)

Equation (9) defines an iterative scheme. If the reflection and

transmission coefficients of a set of Cantor bar fractal layers

of growth stage n are to be computed, iterating equation (9)

is used with initial values U. (dn), V. (dm), and W. (dn); m =

1,2,. . . , n. From the relationship between T parameters and

S scattering parameters, we have

Sll(j’) = Sz2(~) = –vm(dn)/un(dn) (11)

s12(,f) = f721(,f) = l/~m(dn), (12)

which are just the reflection and transmission coefficients of
the Cantor bars in growth stage n.

From these deductions, the exact iterating algorithm of

(9)-(10) dramatically reduces the amount of calculation needed

to compute the reflection and transmission coefficients of the

discrete fractal layers. For a set of Cantor bars of growth stage

n, for example, only n iterations are needed. To solve the same

problem with the chain-matrix approach, the multiplication of
(2n+l – 1) matrices is required.

The next, we consider the case of n ~ co. Suppose that

the limits of un, v~ and W. exist, and let u = limn+m un,
v = limm~m v., w = limn~m w., we will obtain from (9)

w = (1 — ue~”)e~o,u = u2e~* — v2e–~0, (13)
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where, O = ~OA/R. Considering the condition: det [T] =

Uw+v 2 = 1, (14) gives

~–ie = 0, (14)

which is a contradictory equation. Thus the supposition is not

true. That is to say, the limit of the reflection (or transmission)

coefficient of the Cantor dust (n + cm) ‘do not exist.

IV. NUMERICAL EXAMPLES AND DISCUSSION

It is well known that the basic propagation mode of a

rectangtthir waveguide is ,TEIO mode. We have computed the

reflection coefficients of two typical waveguides (BJ-32 and

BJ- 100) filled with ‘fractal Cantor layers when TEIO mode

is propagated, where the structural parameters are chosen as

e, =4, PT = l,e~= l,pe = l, A=2a, andthe range of

frequency is ~ G [jC, 2~C]. Fig. 4(a) gives the the reflection

properties of the Cantor bars (R’= 3) of growth stage O, 2,

3, 4, 8, 10 in the BJ-32 waveguide;’ Fig. 4(b) gives those of

the Cantor b&-s (R = 2) of growth stage O, 2, 3, 4, 5, 6 in

the BJ-O waveguide.

From Fig. 4, the waveguides filled with’ fractal Cantor bar

layers have better band-pass or band-elimination behaviors

than those filled with even dielectrics (i.e., n = O). For

example, in BJ-32 waveguide, well frequency-select property

exists when n = 2, well band-elimination property exists when

n = 3 and well band-pass property exists when n = 4. Similar

conclusion can be made in BJ- 100 wavegtiide. Thus, some

special behaviors will be obtained if the parameters of the

fractal Cantor bar layers filled in the waveguide are carefully

chosen.

On the other hand, the method presented here and the

concept of self-similarity of networks can be used in various

types of computation involving self-similar fractal structure.

For example, the problem mentioned in [8] can also be solved

by our method. Comparing the computed results, they are

completely the same, which shows the availability of this

scheme.
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Fig. 4. The reflection coefficients of the fractal Cantor layers in the rectmr-

gglar waveguides. (a) BJ-32 waveguide (72.14 x 34.04 rnmz) and R = 3;
(b) BJ-1OO waveguide (22.86 x 10.16 mmz) and R = 2.
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