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Reflection from Fractal Cantor Layers
in a Rectangular Waveguide

T. J. Cui and C. H. Liang, Senior Member, IEEE

Abstract—The multilayered medium modeled by a Cantor bar
is a type of fractal structure that has found wide applications
in some optical and quantum areas. The reflection properties of
wave in a rectangular waveguide filled with fractal Cantor bar
layers are investigated. By introducing a concept of self-similarity
of networks, a novel exact self-similar algorithm for reflection and
transmission coefficients is derived. Numerical examples show
that the reflection from the fractal layer in a waveguide has some
special properties.

1. INTRODUCTION

S INCE the fractal concept was first proposed by Mandelbrot
in 1970s [1], its wide applications have been found in
natures and social sciences. In the optical and electromagnetic
areas, a lot of researches have been made by Jakeman,
Bourrely, Jaggard and other scholars [3] ~ [8]. One of the
above applications is the problem of electromagnetic wave
interactions with finely divided layers characterized by a
specified fractal distribution, which finds applications in areas
as varied as multilayer synthesis and analysis, distributed-feed
back integrated-optical structures, and multiple-quantum-well
devices [7], [8]. In this letter, we will consider the problem
of guided wave interactions with fractal layers, in which the
reflection properties from the fractal Cantor bar layers in a
rectangular waveguide are investigated and a novel exact self-
similar algorithm for reflection and transmission coefficients
is derived by introducing the concept of self-similarity of
networks.

II. RECTANGULAR WAVEGUIDE FILLED WITH FRACTAL
CANTOR BAR LAYERS AND SELF-SIMILAR NETWORKS

Fractals are characterized by their dilation symmetry or
property of self-similarity in which the object is invariant
under a change of scale and displacement. Cantor set is a
typical example of the fractals. As demonstrated in Fig. 1,
a Cantor bar layers in a rectangular waveguide is generated
from a bar of unit length by repeatedly removing the middle
1/R(R > 1) of each existing bar. Each part of the bar layers
at a given stage of growth, when magnified, appears as the set
in a previous stage. Cantor dust is formed when the height of
the bars becomes vanishingly small.

If the height of the bar in growth stage 0 is A, the height
of each bar of the Cantor bars in growth stage m is easily
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Fig. 1. Generation of a fractal Cantor bar (R = 3) in a rectangular

waveguide and its stages of growth.

obtained from the generation of the fractal Cantor layers:
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and the relation between A, (the distance of the two bars in
growth stage 1, see Fig. 1) and d,,, is further derived
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Because the total number of the bars in growth stage m is
M(m) = 2™, the fractal dimension D, of the Cantor dust is
achieved by using the usual definition of fractals [1]

D.=— lim InM(m) In2

m=—oo In(dy,) ~ In(2R) —In(R-1)’ ®

which is just the Hausdorff’s dimension [2].

As we can see from Fig. 1, this fractal dimension indicates
that the Cantor dust occupies more space than a point (D, —
0) but less than a line (D. — 1). As the Cantor bar ideally
approaches higher stages of growth, its total length approaches
zero, and the number of bars becomes unbounded.

According to microwave network theory, the Cantor set in
Fig. 1 will be equivalent to multiple cascaded networks which
we call Cantor cascaded networks. These Cantor cascaded
networks are characterized by their dilation symmetry, thus
we define them as self-similar networks.
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Fig.2. The equivalent microwave network of the fractal Cantor bar in growth
stage 0.

1II. REFLECTION AND TRANSMISSION COEFFICIENTS OF THE
FRACTAL CANTOR LAYERS IN A RECTANGULAR WAVEGUIDE

To obtain the self-similar networks of the fractal Cantor
layers in a rectangular waveguide, we first consider the mode
propagation constant 3 and characteristic wave impedance Z
of the waveguide filled with even dielectrics. Suppose that
the size of the waveguide is ¢ x b and the permittivity and
permeability relative to free space of the dielectrics are £, and
1y respectively, by the guided wave theory we have [9]

ﬂ(ur? &r) = 21y fo/lirEr/C )
ZOTE(/J'N 57‘) =TV /Lr/sr/’)’,
ZgM (i, £1) = 0V e [0, )

where Zg® and ZJ™ represent the characteristic wave imp-
edances of TE,, mode and TM,,, mode respectively, and

v=V1-(f/])
fe= (Y (p/a)2 + (Q/b)z/(z\/ ,U're'r)y

p=0,1,2,---; ¢=0,1,2,---; p=q=0 excepted,

in which f is the frequency; ¢ = 3 x 10% m/s is the light speed
in free space.

For the fractal Cantor bar layers in the rectangular wave-
guide shown in Fig. 1, the white areas represent the back-
ground or host dielectric, whose permittivity and permeability
relative to free space are denoted ¢, and p.; while the shaded
areas represent the embedded-layer, denoted ¢, and p,. Thus
the equivalent microwave network of the Cantor bar in growth
stage O is obtained, as shown in Fig. 2, where T3; and Ti,
are the 1" parameters of the transmission line junction. By the
network theory, we have

T11 =1 /

1— RZ,, Ti2 = Ro1/y/1— R%, (6

where
Roy = (Zo1 — Zo0)/(Zo1 + Zoo), (7

in which Zp; = ZO(/’L‘r)ET), Zoy = ZO(;U'e)Ee)v /81 = IB(N‘I‘7€T)7
as expressed in (4) and (5).

According to the properties of 1" parameters, the total T’
parameters of the Cantor bar in growth stage 0, [Tp] =
[ uo Vo

] will be achieved from Fig. 2,
—Vo Wy

uo(do) = [exp(jBrdo) — R3; exp(—jBido)l/(1 — R;) (8a)
’l)o(do) = -—j2R01 Sin(ﬂldo)/(l — R(2)1) (Sb)
wo(do) = [exp(—jﬂldo) - R(2)1 eXP(jﬂldO)]/(l - R%l) (8c)

and det[Ty] = uowo + vZ = 1 is satisfied.
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Fig. 3. The equivalent microwave network of the fractal Cantor bars in
growth stage m.

For the fractal Cantor bars in growth stage 1 (see Fig. 1),
their equivalent microwave network should consist of two sub-
networks and a section of transmission line whose propagation
constant is Bo = B(ie,€e) and length is Ay, which are
cascaded. Each of the sub-networks is the same as the total
network of the Cantor bar in growth stage 0, if dy is replaced
by d;. This is just the self-similarity of networks. On the
analogy of above idea, the equivalent microwave network of
the Cantor bars in growth stage m also consists of two sub-
networks and a section of transmission line. Each sub-networks
is the same as the total network of the bars in growth stage
m — 1 if dy,_1 is replaced by d,,, as shown in Fig. 3.

By using the properties of 1" parameters, the total 1" pa-
rameters of the Cantor bars in growth stage m, [T,] =
[ Ym  Um } can be derived from Fig. 3

—Um W,

Um(dm) = U’Zn—l(dm) exp[jfm(dm)]

— U —1(dim) exp[— 58 (dum)] %)
'Um(dm) = vm—l(dm){um—l(dm) eXp[jem(dm)]
+Wi—1(dm) exp[— 0 (dm)]} (9b)
Wy (dm) = w?n—l(dm) exp[—j0m(dm)]
- vsn—l(dm) exp[jfm(dm)] CY)
and det[T,,] = det[T},—1] = 1 is satisfied, where
em(dm) = (oo = ﬁo%‘dm (10$)

Equation (9) defines an iterative scheme. If the reflection and
transmission coefficients of a set of Cantor bar fractal layers
of growth stage n are to be computed, iterating equation (9)
is used with initial values uo(dy, ), vo(dy ), and wo(dn); m =
1,2,---,n. From the relationship between T' parameters and
S scattering parameters, we have

S11(f) = Sea(f) = —vn(dn)/un(dn)
Sl2(f) = S?l(f) = 1/un(dn),

which are just the reflection and transmission coefficients of
the Cantor bars in growth stage 7.

From these deductions, the exact iterating algorithm of
(9)-(10) dramatically reduces the amount of calculation needed
to compute the reflection and transmission coefficients of the
discrete fractal layers. For a set of Cantor bars of growth stage
n, for example, only n iterations are needed. To solve the same
problem with the chain-matrix approach, the multiplication of
(271 — 1) matrices is required.

The next, we consider the case of n — oo. Suppose that
the limits of u,,v, and w, exist, and let v = lim,_, oo Un,
v = liMy, 00 Vn, W = limy,_, 00 Wy, we will obtain from (9)

13)

(11)
(12)

w=(1- ue?®)e?® u = u?e?® — vle Y,
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where, 9 = BpA/R. Considering the condition: det[T] =
uw + v? = 1, (14) gives

e 1% =0, (14
which is a contradictory equation. Thus the supposition is not

true. That is to say, the limit of the reflection (or transmission)
coefficient of the Cantor dust (n — oo) do not exist.

IV. NUMERICAL EXAMPLES AND DISCUSSION

It is well known that the basic propagation mode of a
rectangular waveguide is TE;¢ mode. We have computed the
reflection coefficients of two typical waveguides (BJ-32 and
BJ-100) filled with fractal Cantor layers when TE;o mode
is propagated, where the structural parameters are chosen as

e = 4,4, = 1,6 = 1, = 1, A = 2a, and the range of
frequency is f € [f.,2f.]- Fig. 4(a) gives the the reflection
properties of the Cantor bars (R = 3) of growth stage 0, 2,
3, 4, 8, 10 in the BJ-32 waveguide; Fig. 4(b) gives those of
the Cantor bars (R = 2) of growth stage 0, 2, 3, 4, 5, 6 in
the BJ-0 waveguide.

From Fig. 4, the waveguides filled with fractal Cantor bar
layers have better band-pass or band-elimination behaviors
than those filled with even dielectrics (i.e., » = 0). For
example, in BJ-32 waveguide, well frequency-select property
exists when n = 2, well band-elimination property exists when
n = 3 and well band-pass property exists when n = 4. Similar
conclusion can be made in BJ-100 waveguide. Thus, some
special behaviors will be obtained if the parameters of the
fractal Cantor bar layers ﬁlled in the waveguide are carefully
chosen.

On the other hand, the method presented here and the
concept of self-similarity of networks can be used in various
types of computation involving self-similar fractal structure.
For example, the problem mentioned in [8] can also be solved
by our method. Comparing the computed results, they are
completely the same, which shows the availability of this
scheme.
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Fig. 4. The reflection coefficients of the fractal Cantor layers in the rectan-
gular waveguides. (a) BJ-32 waveguide (72 14 x 34.04 mm?) and R = 3;
(b) BJ-100 waveguide (22.86 x 10.16 mm?) and R =2

REFERENCES

[1] B.B.Mandelbrot, The Fractal Geometry of Nature. San Francisco, CA:
Freeman, 1982, ch. 1.

[2] K. Falconer, Fractal Geometry. New York: John Wiley, Chichester,
1990, ch. 1.

[3] E. Jakeman, “Fresnel scattering by a corrugated random surface with
fractal slope,” J. Opt. Soc. Am., vol. 72, pp. 1034-1040, 1982.

[4] C. Bourrely, P. Chiappetta, and B. Torresani, “Light scattering by
particles of arbitrary shape: A fractal approach,” J. Opr. Soc. Am., vol.
A-3, pp. 250-255, 1986.

[5] D.L. Jaggard and Y. Kim, “Diffraction by bandlimited fractal screens,”
J. Opt. Soc. Am., vol. A-4, pp. 1055-1061, 1987.

[6] D.L. Jaggard and X. Sun, “Scattering from fractally corrugated sur-
faces,” J. Opt. Soc. Am., vol. A-7, pp. 1131-1136, 1990.

, “Scattering from bandlimited fractal fibers,” IEEE Trans. Anten-

nas Propagat., vol. 37, pp. 1591-1596, 1989,

, “Reflection from fractal multilayers, *
1428-1430, 1990.

[9] R.F. Harrington, Time-Harmonic Electromagnetic Field. New Yoik:
McGraw-Hill, 1961, pp. 148-~152.

Optics Lett., vol. 15, pp.




